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The effect of an insoluble surfactant on the stability of the core–annular flow of two
immiscible fluids is investigated by a normal-mode linear analysis and by numerical
simulations based on the immersed-interface method for axisymmetric perturbations.
The results reveal that, although the Marangoni stress due to surfactant concentration
variations is unable to initiate a new type of instability as in the case of two-
dimensional two-layer channel flow, it does destabilize the interface by broadening
the range of growing wavenumbers and by raising the growth rate of unstable
perturbations. Numerical simulations for large-amplitude disturbances reveal that the
surfactant plays an important role in determining the morphology of the interfacial
structures developing in the nonlinear stages of the motion.

1. Introduction
The stability of the core–annular flow has been discussed extensively in the literature

with reference to lubricated pipeline transport, two-phase flow in porous media, and
flow in the airways of the lung, as reviewed by Joseph & Renardy (1993), Joseph et al.
(1997), and Renardy (1997), and more recently by Kouris & Tsamopoulos (2001,
2002), Wei & Rumschitzki (2002a, b), and Grotberg & Jensen (2004). In the absence
of flow, the core–annular arrangement falls prey to the Rayleigh capillary instability
leading to the deposition of the outer fluid into annular lobes attached to the wall
in the case of thin annular layers, or to dispersion of a series of drops separated by
lenticular bridges that occlude the tube cross-section in the case of thicker annular
layers. Normal-mode stability analysis and numerical simulations of the core–annular
flow have demonstrated that the shearing action of the basic flow has a stabilizing
influence at sufficiently high Reynolds numbers (e.g. Russo & Steen 1989; Georgiou
et al. 1992; Kouris & Tsamopoulos 2001, 2002). When instability occurs, the cylindrical
interface develops axisymmetric bamboo and sawtooth waves or three-dimensional
corkscrew and snake waves. Unsaturated growth leads to breakup of the core fluid
into drops and slugs and may cause a transition to an altered state in which the fluids
are stratified.

Several authors have studied the effect of an insoluble surfactant on the instability
of a stationary arrangement and noted that the surfactant may reduce the growth
rate of disturbances by as much as a quarter (e.g. Carroll & Lucassen 1974; Otis et al.
1993; Cassidy et al. 1999). Kwak & Pozrikidis (2001) confirmed that the growth rate
of the capillary instability non-dimensionalized by the unperturbed surface tension
is reduced owing to the Marangoni interfacial tractions associated with variations
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in the surfactant concentration. However, in the presence of a mean flow, the time
scale of the instability should be defined by the mean, centreline, or interfacial
velocity, and the rescaling necessitates a re-interpretation of the earlier work. The
possibly destabilizing effect of the surfactant under the new non-dimensionalization
is in contrast with conventional wisdom, which anticipates that adding a surfactant
will reduce the surface tension and thereby slow down the growth of the capillary
instability. To reconcile these viewpoints, we observe that the base-state surface
tension instead of the clean-interface surface tension is used to perform the necessary
non-dimensionalizations.

Consideration of the effect of the surfactant on the core–annular flow is partly
motivated by the discovery that an insoluble surfactant may promote or initiate the
growth of interfacial waves in two-dimensional two-layer channel flow, even under
conditions of Stokes flow (Frenkel & Halpern 2002; Halpern & Frenkel 2003;
Blyth & Pozrikidis 2004a, b, c; Pozrikidis 2004a, b). Conversely, a shear flow may
destabilize an otherwise stable interface populated by surfactants owing to the growth
of the so-called Marangoni mode, which is complementary to the Yih mode due
to viscosity stratification. Although these results are highly suggestive of the
destabilizing influence of the surfactant in core–annular flow, it is possible that the
effect may be masked by the Rayleigh–Tomotika capillary instability of the cylindrical
interface in the axisymmetric configuration. On the other hand, because the capillary
instability is intermittently suppressed at sufficiently high mean-flow velocities,
the Marangoni mode may dominate the stable regimes of the uncontaminated
flow.

Kas-Danouche, Papageorgiou & Siegel (2004) performed an asymptotic analysis
of the instability of the core–annular flow in the presence of an insoluble surfactant,
in the limit where the annulus is thin compared to the core and the wave period
is of the order of the tube radius. The mathematical model results in a system of
two coupled nonlinear partial differential equations for the interfacial amplitude and
the surface surfactant concentration. Solving these equations to assess the precise
effect of the surfactant was left as a topic for further work. Wei (2005) and Wei &
Rumschitzki (2005) demonstrated that, when the annular layer is much thinner than
the core, the surfactant extends the range of unstable wavenumbers. An analysis for
a time-periodic base flow has been performed by Wei, Halpern & Grotberg (2005).

In this work, we study the stability of the core–annular flow in the presence of an
insoluble surfactant by undertaking a normal-mode linear stability analysis and also
by performing complementary numerical simulations of the large-amplitude motion
using a finite-difference method combined with Peskin’s immersed-interface approach
(e.g. Peskin 2002). Previous authors have performed simulations of the axisymmetric
flow in the absence of surfactant in straight and periodically constricted tubes using
the volume-of-fluid (VOF) method (Li & Renardy 1999), and spectral expansions
coupled with domain mapping (Kouris & Tsamopoulos 2001, 2002). In both parts
of the present study, axisymmetric disturbances are also considered. However, the
severity of this restriction is ameliorated by the discovery that axisymmetric modes
are known to be most dangerous for a clean interface (Preziosi, Chen & Joseph 1989).
The numerical results will show that the primary destabilizing effect of the surfactant
is to extend the range of unstable linear modes to a wider range of wavenumbers.
Although the nonlinear features of the instability are generally similar to those
observed in clean fluids, with wave overturning and the formation of slugs and drops
occurring under certain conditions, it will be shown that the surfactant is responsible
for a much richer dynamics.
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Figure 1. Schematic illustration of axisymmetric core–annular flow in a circular tube.

2. Problem statement
We consider the axisymmetric, pressure-driven core–annular flow of two immiscible

Newtonian fluids in a circular cylinder of radius b, and introduce cylindrical polar
coordinates, (x, σ, ϕ), as illustrated in figure 1. All geometrical and flow variables are
assumed to be independent of the azimuthal angle, ϕ. The inner and outer fluids
are labelled, respectively, by the subscripts 1 and 2. The interface is occupied by an
insoluble surfactant with surface concentration Γ , that is convected and diffuses over
the interface to alter the local surface tension, γ , according to an assumed surface
equation of state.

When the surface surfactant concentration is well below the saturation level, a
linear relationship may be assumed between the surface tension and the surfactant
concentration according to Gibbs’ law, γc − γ = Γ E, where E is the surface elasticity
and γc is the surface tension of a clean interface which is devoid of surfactants
(e.g. Pozrikidis 2004a). In terms of the dimensionless physiochemical parameter
β = Γ0E/γc, the linear equation of state reads

γ =
γ0

1 − β

(
1 − β

Γ

Γ0

)
, (2.1)

where Γ0 is a reference concentration corresponding to the surface tension γ0 = γc (1−
β). The significance of the surfactant is expressed by the dimensionless Marangoni
number,

Ma ≡ EΓ0

γ0

=
β

1 − β
. (2.2)

Nonlinear equations of state incorporating non-ideal surfactant behaviour and surface
saturation are reviewed by Pozrikidis (2004a).

The individual fluid motions in the core and annulus are governed by the Navier–
Stokes and the continuity equation, subject to the no-slip and no-penetration
conditions at the tube wall, the usual kinematic condition requiring continuity of
velocity at the interface, and a dynamic condition expressing a balance between the
hydrodynamic traction exerted on either side of the interface, surface tension and
Marangoni traction due to the surfactant. Specifically, the dynamic condition requires

� f ≡
(
σ (1) − σ (2)

)
· n = γ 2 κm n − ∂γ

∂l
t, (2.3)

where σ (j ) is the Newtonian stress tensor in the j th fluid, n is the unit normal vector
pointing into the core fluid, t is the unit tangent vector pointing in the direction of
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increasing arclength l, and κm = (1/2) ∇ · n is the mean curvature of the axisymmetric
interface, as illustrated in figure 1.

In the axisymmetric configuration, the surfactant surface concentration, Γ (x, t),
evolves according to the convection–diffusion equation

dΓ

dt
= w

∂Γ

∂l
− 1

σ

∂(σutΓ )

∂l
− Γ 2κm un +

Ds

σ

∂

∂l

(
σ

∂Γ

∂l

)
, (2.4)

where ut = u · t and un = u · n are the interfacial velocities in the directions of the
tangential and normal vectors along the contour of the interface in an azimuthal
plane, and Ds is the surface surfactant diffusivity (Li & Pozrikidis 1997; Yon &
Pozrikidis 1998). The derivative d/dt on the left-hand side of (2.4) denotes the rate
of change of a variable following the motion of the interfacial marker points moving
with the component of the fluid velocity normal to the interface, and with an arbitrary
tangent velocity, w(l). If w =0, the nodes reduce to marker points moving normal
to the interface; if w = ut , the nodes are Lagrangian point particles moving with the
local fluid velocity.

When the interface is perfectly cylindrical and the surfactant concentration is
uniform and equal to Γ0, both the velocity and the shear stress are continuous across
the interface, and the flow is unidirectional. A cylindrical interface can be established
if the pipe is vertical, or else if the fluid densities are perfectly or nearly matched so
that the effect of gravity is insignificant. For simplicity, we consider fluids with equal
densities, where gravity plays no role. The piecewise parabolic velocity profile of the
basic flow is given by

ux =
χ

4µ1

(a2 − σ 2) + uI for 0 � σ � a,

ux = − χ

4µ2

(σ 2 − a2) + uI for a � σ � b,


 (2.5)

where a is the interface radius, χ is the negative of the streamwise pressure gradient,
µ1 and µ2 are the viscosity of the core and annular fluid, and uI is interfacial velocity
given by

uI =
χ

4µ2

(b2 − a2), (2.6)

independent of the viscosity of the core fluid. The corresponding pressure distribution
is given by

p
(0)
1 (x, σ ) = −χx + P0, p

(0)
2 (x, σ ) = −χx − γ0

a
+ P0, (2.7)

for j = 1, 2, where γ0 is the unperturbed surface tension corresponding to the
surfactant concentration Γ0, and P0 is an indeterminate constant.

To examine the effect of the surfactant on the stability of the basic unidirectional
flow subject to axisymmetric perturbations, we first perform a normal-mode linear
stability analysis for Navier–Stokes and Stokes flow, and then carry out numerical
simulations of the nonlinear motion using a finite-difference method combined with
Peskin’s immersed-interface approach.
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3. Formulation of the linear stability problem
In the presence of a minor axisymmetric disturbance, the cylindrical interface is

displaced to a new position described by

σ = f (x, t) = a + εη(x, t), (3.1)

where ε is a small dimensionless number, and η is the wave form of the perturbation.
Correspondingly, the Stokes streamfunction and pressure assume the forms

ψj = ψ
(0)
j + εψ

(1)
j (x, σ, t) + · · ·, pj = p(0) + ε p

(1)
j (x, σ, t) + · · ·, (3.2)

where the superscript (0) denotes the basic unidirectional flow, and the superscript
(1) denotes the perturbation. The x and σ disturbance velocity components in the
j th fluid derive from the Stokes streamfunction using the relations

w
(1)
j =

1

σ

∂ψ
(1)
j

∂σ
, u

(1)
j = − 1

σ

∂ψ
(1)
j

∂x
. (3.3)

Substituting (3.2) into the vorticity transport equation for axisymmetric flow and
linearizing, we find

∂ζ
(1)
j

∂t
+ w

(0)
j

∂ζ
(1)
j

∂x
=

µj

ρ

1

σ
D2

(
σ ζ

(1)
j

)
, D2ψ

(1)
j = −σ ζ

(1)
j , (3.4)

where ζ
(1)
j is the perturbation vorticity in the j th fluid, and

D2 ≡ ∂2

∂σ 2
− 1

σ

∂

∂σ
+

∂2

∂x2
. (3.5)

For a normal mode perturbation with wavenumber k and complex phase velocity
c = cR + icI , the perturbation assumes the usual form(

ψ
(1)
j , p

(1)
j , η

)
= (φj (σ ), µj qj (σ ), A1) exp(ik[x − ct]), (3.6)

where i is the imaginary unit. The surface tension and surfactant concentration adopt
the similar forms,

γ = γ0 + εγ1 exp(ik[x − ct]), Γ = Γ0 + εΓ1 exp(ik[x − ct]), (3.7)

where Γ0 and γ0 are the uniform values corresponding to the unperturbed cylindrical
interface, and Γ1, γ1 are complex amplitudes. Substituting (3.6) into (3.4) and
combining the two equations, we derive the axisymmetric analogue of the Orr–
Sommerfeld equation,

ikρ

µj

(
w

(0)
j − c

)
(D2 − k2)φj = (D2 − k2)2φj . (3.8)

Linearizing the kinematic condition at the interface, D(σ − f )/Dt = 0, where D/Dt

is the material derivative, we find

∂η

∂t
+ uI

∂η

∂x
− u

(1)
1 (σ = a) = 0, (3.9)

which yields the condition,

a(uI − c) A1 + φ1(a) = 0. (3.10)
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Requiring that the velocity be continuous across the interface yields the conditions

φ1 = φ2, φ′
1 − φ′

2 =
2a2

(b2 − a2)
uI (λ − 1) A1, (3.11)

where a prime indicates differentiation with respect to σ , λ= µ2/µ1 is the viscosity
ratio, and all terms are evaluated at σ = a.

The linearized normal component of the interfacial stress balance (2.3) may be
written in the pressure-free form,[

2µj

∂2u
(1)
j

∂σ∂x
− µj ∇2w

(1)
j

]1

2

= γ0

(
1

a2

∂η

∂x
+

∂3η

∂x3

)
− 1

a

∂γ

∂x
, (3.12)

where all terms are evaluated at σ = a, and [ · ]12 = [ · ]j =1 − [ · ]j=2. Note that, in the
linear approximation, the effect of the Marangoni traction expressed by the last term
on the right-hand side involves the stabilizing azimuthal curvature of the cylindrical
configuration, but not the destabilizing perturbation curvature in an axial plane. To
derive this equation, we have eliminated the pressure using the x component of the
Navier–Stokes equation. Substituting the normal mode forms, we obtain

−2k2µ1(1 − λ)φ1 +
1

a
(3k2a2 − 1)(µ1φ

′
1 − µ2φ

′
2) + (µ1φ

′′
1 − µ2φ

′′
2 )

−a(µ1φ
′′′
1 − µ2φ

′′′
2 ) = ik(1 − k2a2)γ0 A1 − ikaγ1. (3.13)

The linearized shear stress balance at the interface takes the form[
µj

(
∂w

(1)
j

∂σ
+

∂u
(1)
j

∂x
+ η

d2w
(0)
j

dσ 2

)]1

2

=
∂γ

∂x
, (3.14)

where all terms are evaluated at σ = a. Substituting the normal mode forms we obtain

k2aµ1(1 − λ)φ1 − (µ1φ
′
1 − µ2φ

′
2) + a(µ1φ

′′
1 − µ2φ

′′
2 ) = ika2γ1.

Finally, the linearized form of the surfactant transport equation (2.4) takes the form

∂Γ

∂t
+ uI

∂Γ

∂x
+ Γ0

(
∂w

(1)
1

∂x
+

∂w
(0)
1

∂σ

∂η

∂x
+

u
(1)
1

a

)
= Ds

∂2Γ

∂x2
, (3.15)

where all terms are evaluated at the unperturbed position, σ = a (e.g. Blyth &
Pozrikidis 2004a). Substituting in this expression the normal forms (3.6) and (3.7) we
find

Γ1

Γ0

=
φ1 − aφ′

1 − a2S A1

a2(uI − c) − ika2Ds

, (3.16)

where

S ≡
(

dw
(0)
1

dσ

)
σ=a

= − 2λauI

(b2 − a2)
. (3.17)

Next, we adopt the linear surface equation of state (2.2), and find γ1 = −(Maγ0/Γ0)Γ1,
which can be used together with (3.16) to eliminate γ1 from the normal and tangential
stress balances (3.13) and (3.15). To conclude the formulation of the linear stability
problem, we require

φ1(0) = φ′
1(0) = 0, φ2(b) = φ′

2(b) = 0. (3.18)
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The first two conditions ensure that both φ1/σ and φ′
1/σ are bounded at the origin

(e.g. Drazin & Reid 1981, p. 217); the last two conditions express the no-slip and
no-penetration conditions at the tube wall.

The task is to solve the axisymmetric Orr–Sommerfeld equation (3.8) subject to
conditions (3.10), (3.11), (3.13), (3.15) and (3.18). Dimensional analysis reveals that
the complex phase velocity, c, depends on the reduced wavenumber kb, Marangoni
number Ma, core to tube radius a/b, viscosity ratio λ, Reynolds number Re, capillary
number Ca, and a dimensionless property group α, defined as

Re =
ρuIb

µ2

, Ca =
µ2uI

γ0

, α =
γ0b

µ2Ds

. (3.19)

Preziosi et al. (1989) introduced the group

J ≡ Re

Ca
=

ρ γ0 b

µ2
2

, (3.20)

involving the physical properties of the fluids and tube radius alone. Any two of the
three dimensionless numbers Re, Ca and J , can be used to characterize the stability
of the core–annular flow. An appealing feature of the property group J is that it is
independent of the base-flow mean shear stress represented by µ2uI . Thus, by fixing
J and varying Ca we are able to study the effect of convective motion. Alternatively,
by fixing Ca and varying Re, we are able to investigate the role of inertia mediated
by the fluid density. Results will be presented for both choices of parameters.

Numerical solutions were computed using a Chebyshev tau method (e.g. Orszag
1971; Dongarra, Straughan & Walker 1996). As a preliminary, the governing equation
(3.8) is multiplied by σ 4 to avoid singular coefficients at the tube axis, σ = 0, and each
of the two fluid regions, 0 � σ � a and a � σ � b, is mapped onto the standard
interval −1 � σj � 1, for j =1, 2, using the linear transformations

σ1 = 2
σ

a
− 1 in fluid 1, σ2 = 2

(r − a)

(b − a)
− 1 in fluid 2. (3.21)

The streamfunction is then expanded in a truncated series of Chebyshev polynomials,
Tk(σj ), by setting

φj (σj ) =

Nj∑
k=0

ajk Tk(σj ), (3.22)

for j = 1, 2, where ajk are unknown coefficients, and N1, N2 are selected truncation
levels. Substituting (3.22) in the axisymmetric Orr–Sommerfeld equation (3.8) for
j =1, 2, and projecting the result onto Tm(σj ) for m = 0, . . . , Nj − 4 under the
Chebyshev inner product,

〈Tm(x), f (x)〉 =

∫ 1

−1

1√
1 − x2

Tm(x)f (x) dx, (3.23)

we obtain a system of N1 + N2 − 6 linear equations for the N1 + N2 + 3 unknowns,
comprised of the N1 + N2 + 2 coefficients, ajk , and the interfacial amplitude A1. All
integrals involving Chebyshev polynomials and their derivatives in the projection may
be computed exactly using known identities and recursive relations, as discussed in
Appendix A. Substituting (3.22) into the boundary conditions (3.10), (3.11), (3.13),
(3.15) and (3.18), we obtain nine more equations. This brings the total number of
equations to N1 + N2 + 3, which is equal to the total number of unknowns. The
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full set of equations is finally compiled in the linear system A · w = cB · w, where
w =(a10, . . . , a1N1

, a20, . . . , a2N2
, A1)

T , and A, B are square matrices of size N1 + N2 + 3.
The generalized eigenvalue problem was solved using a NAG routine based on
the QZ algorithm to obtain the complex phase velocities, c. To filter out spurious
eigenmodes, the truncation levels N1 and N2 were increased until genuine modes were
clearly identified. Unless otherwise stated, all results presented in the next section
were computed using N1 =N2 = 10 Chebyshev modes.

A first check of the accuracy of the numerical method was performed by comparing
the numerical results with those available for circular Poiseuille flow of a single fluid,
and confirming excellent agreement (e.g. Davey & Drazin 1969). To gain further
confidence in the spectral code, growth rates were computed for an interface that
is devoid of surfactants, Ma =0. Hickox (1971) showed that core–annular flow with
the less viscous fluid in the core is unstable to long waves irrespective of the size
of the Reynolds number. This result was extended numerically to arbitrary waves
by Joseph, Renardy & Renardy (1984) in the absence of surface tension. Numerical
experimentation with the present code for λ > 1 and Ma =0 confirmed that the
dominant mode is always unstable.

To validate the code in the presence of surfactant, the numerical results were
compared with analytical expressions for Stokes flow, as discussed in Appendix B.
Figure 2(a) shows a graph of the dimensionless growth rate of the dominant
unstable mode s ≡ bkcI /uI , for Ma =1.0, a/b =0.5, λ=0.5, Ds = 0, over a range
of wavenumber. The solid line, corresponding to the Chebyshev tau method with
Reynolds number set to zero, passes precisely through the circles representing the
analytical results for Stokes flow. As a final check, the growth rates were confirmed to
be identical with those computed by Kwak & Pozrikidis (2001) for a quiescent basic
state, χ = 0, in the presence of surfactants, under a broad range of conditions.

4. Linear stability of the core–annular flow
In the absence of surfactant, the core fluid is susceptible to the Rayleigh capillary

instability when subjected to disturbances with wavenumber below a critical value. For
the parameter values shown in figure 2 for Stokes flow, the surfactant raises this critical
value from 2 to 2.02, and thereby extends the range of unstable wavenumber. As the
capillary number increases, the effect of the surfactant becomes more pronounced.
This is shown in figure 2(b), where the growth rate is plotted against wavenumber for
three different values of Ca. For sufficiently large Ca, it appears that the surfactant
destabilizes all wavenumbers. These predictions are in agreement with the results
of Wei (2005) and Wei & Rumschitzki (2005) who studied the stability of the flow
in the thin annulus limit.

In the remainder of this section, we focus our attention on the effect of inertia for
moderate capillary numbers. Figure 3 illustrates the effect of the Reynolds number on
the growth rate of a perturbation with wave number kb = 1.0, for a/b = 0.5, λ= 0.5
and Ds = 0. Results are shown both for a clean interface (dotted line), Ma =0, and
for a contaminated interface with Ma = 1.0 (solid and broken lines). At non-zero
Reynolds number, an infinite number of normal modes arise. In the presence of
surfactant, two most important modes can be identified. The first mode, referred to as
the capillary mode, extends the corresponding dominant mode for a clean interface.
The second mode, referred to as the Marangoni mode, is identified from the stability
analysis for Stokes flow where precisely two normal modes arise. All three curves
in figure 3 emanate from their predicted values for Stokes flow (see Appendix B).
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Figure 2. Dimensionless growth rates, s ≡ kbcI /uI , versus wave number kb for Stokes flow,
Re = 0: (a) Ca= 0.1875, Ma = 1.0, a/b = 0.5, λ= 0.5 and Ds =0. The solid line shows numerical
results obtained by the tau method, and the circles represent analytical results for Stokes flow;
(b) Ma = 1.0, a/b = 0.5, λ= 0.5, Ds = 0, for Ca = 1 (solid line showing s), Ca = 10 (broken line
showing 10 s) and Ca = 100 (dotted line showing 100 s).
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Figure 3. Effect of the Reynolds number on the growth rate of a wave with kb =1.0, for
a/b = 0.5, λ= 0.5, Ca= 0.1875, Ds = 0, Ma =0, and Ma = 1.0. The dominant capillary mode in
the absence of surfactants, Ma = 0, is shown as a dotted line, and the capillary and Marangoni
for Ma = 1.0 are shown as solid and dashed lines, respectively.
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Figure 4. (a) Stability graph of a flow with a/b = 0.5, λ= 0.5, Ds = 0, Ca =0.1875, Re = 1.0,
for Ma = 0 and Ma = 1.0. The capillary and Marangoni mode for Ma = 1.0 are shown as solid
and dashed lines, respectively, and the dominant mode for Ma =0 is shown as a dot-dashed
line. (b) Dependence of the cutoff critical wavenumber on the Marangoni number for the flow
conditions considered in (a).

Since the reduced wave number is less than unity, ka = 0.5, the cylindrical interface
is susceptible to the Rayleigh capillary instability. The numerical results confirm that
the growth rate is positive over the range of Reynolds numbers considered. When
surfactant is introduced, the dominant growth rate increases, thereby exacerbating
the instability. Because the growth rate of the Marangoni growth rate is negative, the
surfactant is responsible for introducing a stable normal mode.

Figure 4(a) shows a stability graph for a/b = 0.5, λ=0.5, Ds = 0, and Re = 1.0, in
the absence of surfactant, Ma = 0, and in the presence of surfactant, Ma = 1.0. The
dominant growth rate for a clean interface, represented by the dot-dashed line, lies
below that for a contaminated interface, represented by the solid line, over an extensive
range of wavenumbers, though the differences are small. Specifically, over the range
of wavenumbers shown, the maximum difference occurs at kb = 2.25, whereupon the
growth rate in the presence of surfactant is 12.4 % larger than that for a clean
interface. The growth rate of the Marangoni mode, represented by the broken line,
rapidly decreases towards negative infinity as the wave number is increased. Similar
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Figure 5. Neutral stability curves for λ= 0.5, Ca=0.1875, Ma = 1.0, Ds = 0, and a/b = 0.25
(broken line), a/b = 0.5 (solid line), and a/b = 0.75 (dot-dashed line). Wavenumbers below
each individual curve are unstable, and wavenumbers above are stable.

behaviour is observed in the case of two-layer flow in a channel confined between
two parallel walls (Blyth & Pozrikidis 2004b).

When a/b = 0.5, the critical wavenumber for stability in Stokes flow in the absence
of surfactant is kb =2.0 for any viscosity ratio, corresponding to the Rayleigh–
Tomotika threshold, ka =1.0. When Re = 1.0 and λ= 0.5, the critical threshold is
shifted slightly to kb = 2.001 in the absence of surfactant, and to kb = 2.03 in the
presence of surfactant. Thus, the surfactant allows a narrow band of slightly shorter
waves to grow. The effect of the Marangoni number on the critical cutoff wavenumber
is demonstrated in figure 4(b). The maximum critical value occurs when Ma = 0.178,
whereupon the effect of the surfactant is most significant. Figure 4 reveals that there
is at most one normal mode with a positive growth rate for a given set of conditions.
Extensive investigation over a wide range of parameter values failed to reveal a case
where more than one growth rate is positive. This appears to be a special feature of the
axisymmetric flow, and is in sharp contrast with the corresponding two-dimensional
two-layer channel flow, where an exchange of stabilities may occur between the first
two modes as the wave number is raised (Blyth & Pozrikidis 2004b).

Figure 5 shows neutral stability curves delineating the boundary between stable and
unstable regimes in the Reynolds-number/wavenumber plane, for λ= 0.5, Ma = 1.0
and Ds = 0. Results are presented for three interface to tube radius ratios, a/b = 0.25,
0.5 and 0.75. The capillary mode is unstable for wavenumber that lie below each
curve, and stable for wavenumber that lie above each curve. As Re → 0, the curve
corresponding to a/b = 0.5, shown as a solid line, approaches the value of 1.01
predicted by linear stability for Stokes flow. In all cases, inertial effects promote the
range of unstable wavenumbers.

Figure 6(a) illustrates the effect of the viscosity ratio on the neutral curves
for Ma = 1.0, Ds = 0 and a/b = 0.5. Results are shown for viscosity ratios λ=
0.125, 0.25, 0.5, 1.0, 2.0 and 4.0. As in figure 5, the flow is unstable for wavenumbers
that lie below each curve, and stable for wavenumber that lie above each curve. The
main effect of raising the viscosity ratio is to elevate the neutral curve, and thereby
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Figure 6. (a) Neutral stability curves for Ca= 0.1875, Ma =1.0, Ds = 0, a/b = 0.5 and viscosity
ratios λ= 0.125 (entire dotted line), λ= 0.25 (lower broken line), λ= 0.5 (lower dot-dashed line),
λ=1.0 (solid line), λ= 2.0 (upper broken line), λ= 4.0 (upper dot-dashed line). The annotations
show regions of stability for the case λ= 0.125. (b) Growth rates, s, for λ= 0.125 for Re = 10.0.
The dominant first mode appears as a solid line, and the second mode as a broken line.
(c) Neutral stability curves for case Ca= 0.1875, Ma = 1.5, Ds = 0, a/b = 0.5 and λ= 0.125.
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Figure 7. Effect of the surfactant on the dominant dimensionless growth rate, s ′ ≡ Ca s =
kbcIµ2/γ0 for a/b =0.5, λ= 0.5, kb = 1, Ds = 0, and J = 1, Ma = 1 (thick solid line), J = 1,
Ma = 0 (thick dashed line), J = 50, Ma = 1 (solid line), J = 50, Ma = 0 (dashed line), J = 100,
Ma = 1 (dash-dotted line), J =100, Ma = 0 (dotted line).

extend the range of unstable wavenumber at a given Reynolds number. In this sense,
increasing λ has a destabilizing influence independent of the surfactant.

An interesting case arises when λ= 0.125. As in the previous examples, stable
and unstable modes are separated by a monotonically rising upper neutral branch,
but now a hoop of stable modes is included in the space below, extending from
Re =0.0 to 34.4. The variation of the growth rates with wave number for the sample
Reynolds number Re =10.0 lying inside the range of the hoop is illustrated in figure
6(b). Similar isolated regions of stable modes lying beneath the upper branch of
the neutral curve are also encountered in the case of a two-dimensional interface,
although with a different boundary topology (Blyth & Pozrikidis 2004b). Increasing
the Marangoni number extends the hoop to the right, as shown in figure 6(c) for
Ma = 1.5, Ds =0, a/b = 0.5 and λ=0.125. In this example, the lower branch touches
the Re axis at Re =276. The critical point at the nose of the stable hoop occurs
at (kb, Re) = (0.17, 296). Increasing the Marangoni number shifts the critical point
further to the right.

Our results have shown that the surfactant increases the growth rate of the dominant
capillary mode and therefore has a destabilizing effect on the flow. In the absence
of a mean flow, surfactants are known to have a stabilizing effect by decreasing
the growth rate of capillary waves (Otis et al. 1993; Cassidy et al. 1999; Kwak &
Pozrikidis 2001). To reconcile these predictions, we fix the property group, J , and
increase the capillary number from zero so as to monitor the effect of convection on a
previously quiescent configuration. Figure 7 shows a graph of the new dimensionless
growth rate, s ′ ≡ s Ca = bkcIµ2/γ0, plotted against Ca, for J = 1, 50 and 100. In the
absence of a mean flow, Ca = 0, the growth rate of the contaminated interface is lower
than that of the clean interface for any value of J , as predicted by Kwak & Pozrikidis
(2001). However, the situation is eventually reversed when the capillary number is
sufficiently increased. At higher values of Ca, the growth rates for a contaminated
interface are larger than those for a clean interface.

Preziosi et al. (1989) performed a linear stability analysis for a clean interface
and presented neutral curves for fixed values of J . In figure 8, we display with the
broken line the neutral curve obtained when J = 1.0695 × 105, λ=0.1, a/b = 0.8696
and Ma = 0, which corresponds to the conditions used to produce their figure 8. To be
consistent with their dimensionless variables, we have used the alternative Reynolds
number ReP ≡ ρux(0)a/µ1, which is based on the centreline velocity of the basic flow,
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Figure 8. Neutral curves for J = 1.0695 × 105, λ= 0.1, a/b = 0.8696, Ds = 0 with Ma = 0,
shown as a broken line, and Ma = 0.5, shown as a solid line. The horizontal coordinate, ReP , is
defined in the text. N1 = N2 = 15 Chebyshev modes are required to resolve the upper branches
accurately.

ux(0). As a result of the different choice for the velocity scale, our quoted value of J

corresponds to the value of their parameter J ∗ = 930. Our figure faithfully reproduces
the neutral curve presented by the previous authors in the absence of surfactant. In
this case, N1 = N2 = 15 Chebyshev modes are required to resolve the upper branch
accurately. Modes contained within the lower branch correspond to a long-wave
instability. The lower branch joins the vertical axis at ka = 1, corresponding to the
Rayleigh–Tomotika threshold, and crosses the horizontal axis at ReP = 50. Modes to
the right of the upper branch, starting at the critical value ReP =275, correspond to
a shorter wave instability, and modes between the two branches are stable. Similar
remarks can be made in the presence of surfactant, as illustrated by the neutral curve
corresponding to Ma =0.5, shown as a solid line. For this curve, the lower branch
joins the horizontal axis at ReP = 154, and the critical Reynolds number for the
upper branch is ReP = 361. Thus, the surfactant extends the range of the long-wave
instability, and delays the onset of the shorter wave instability.

5. Immersed interface method
In the second part of our investigation, we consider the nonlinear evolution of

axisymmetric perturbations by solving the governing equations using numerical
methods. The fluid motion in an azimuthal plane is governed by the generalized
Navier–Stokes equation incorporating viscosity and density differences as well as the
jump in the traction across the interface owing to the surface tension,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + 2∇ · (µE) −
∫

I

D2(x − x′)� f (x ′) dl(x ′), (5.1)

where E = (∇u + ∇uT )/2 is the rate-of-deformation tensor, D2 is Dirac’s delta function
in the (x, σ )-plane with units of inverse squared length, and l is the arclength along
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the trace of the interface in the (x, σ )-plane, denoted by I . The jump in the interfacial
traction, � f , is defined in (2.3) (e.g. Pozrikidis 1997). It is reckoned that the physical
properties of the fluid undergo a step discontinuity across the interface.

Using vector identities, we find that the deviatoric part of the stress tensor in
three-dimensional, axisymmetric or two-dimensional flow can be expressed as

2 ∇ · (µE) = µ∇2u + ∇µ × ω + 2 ∇µ · ∇u, (5.2)

where ω ≡ ∇ × u is the vorticity. The second and third terms on the right-hand
side of (5.2) are non-zero only along the interface. Because ∇µ is normal to the
interface, the second term makes a contribution that is tangential to the interface and
is independent of the normal component of the vorticity.

In the numerical approximation, the discontinuous density and viscosity fields are
replaced by smoothed distributions defined in terms of a mollifying function c(x, σ ),
which takes the value of zero in the bulk of the core fluid, the value of unity in the
bulk of the annular layer, and undergoes a rapid transition across the interface. The
mollified viscosity field is described as µ(x) = µ1 + (µ2 − µ1) c(x), and the density is
given by a corresponding expression. The mollifying function can be computed most
efficiently on the basis of the following exact integral representation for the gradient,

∇c(x) = −
∫

I

D2(x − x ′) n(x ′) dl(x ′). (5.3)

Taking the divergence of (5.3), we derive a Poisson equation for c, which is solved
subject to the condition, c = 0 at the centreline, and c = 1 at the tube wall. The
delta function can be further approximated with a smooth but narrowly distributed
function, and the solution of the discrete problem can be found using a finite-difference
method on the grid used for solving the equation of motion, as will be discussed later
in this section.

In the numerical representation, one period of the interface is traced with NI

interfacial nodes, denoted as xk , k = 1, 2, . . . , NI . At each time step, the nodes are
adaptively redistributed to ensure adequate spatial resolution and prevent clustering
and excessive separation, as discussed by Pozrikidis (2004b). The shape of the interface
is reconstructed from the interfacial nodes using cubic-spline interpolation with
periodic boundary conditions for the first and second derivatives of the functions
x(lp) and σ (lp). At the nodes, the interpolation variable lp is identified with the
current length of the polygonal line connecting adjacent nodes, measured from the
first node. After the interpolation has been concluded, the normal and tangential
vectors are computed using standard formulae of differential geometry, and the mean
curvature is calculated using the formula

κm = −1

2

(
x ′′σ ′ − σ ′′x ′

(x ′2 + σ ′2)3/2
+

x ′

σ (x ′2 + σ ′2)1/2

)
, (5.4)

where a prime denotes a derivative with respect to the interpolation variable, lp . The
negative of the first term inside the large parentheses on the right-hand side is the
curvature of the interface in the (x, σ )-plane, and the negative of the second term is
the conjugate curvature.

In the immersed-interface method (IIM) inspired by Peskin’s immersed-boundary
method (IBM) (Peskin 2002) and coined ‘front tracking’ by some subsequent authors
(e.g. Tryggvason et al. 2001), the line integral on the right-hand side of (5.1) is
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approximated using the trapezoidal rule, yielding∫
I

D2(x − x ′)� f (x ′) dl(x ′) 

NI∑
k=1

D2(x − xk)� f k

lk+1 − lk−1

2
. (5.5)

In computing � f k , the Marangoni traction expressed by the second term on the
right-hand side of (2.3) is evaluated using cubic-spline interpolation with respect to
the polygonal arclength, lp , as ∂γ /∂l = (∂γ /∂lp) (∂lp/∂l). Moreover, the delta function
associated with each node is replaced by a smooth function supported by a rectangular
region centred at the node. For the kth node, we introduce the approximation

D2(x − xk) 
 H(x − xk) ≡ 1

16 δ1δ2

(1 + cos x̂)(1 + cos σ̂ ), (5.6)

for |x − xk| < 2δ1 and |σ − σk| < 2δ2, where δ1 ≡ (�x)q , δ2 ≡ (�σ )q , �x and �σ are
spatial discretization intervals in the streamwise and radial direction associated with
the finite-difference method, 0 < q � 1 is a parameter that determines the spreading
length, and

x̂ ≡ π(x − xk)

2 δ1

, σ̂ ≡ π(σ − σk)

2 δ2

. (5.7)

In particular, the approximate delta function (5.6) spreads over a rectangular area
whose size is equal to 4 δ1 in the x-direction and 4 δ2 in the σ -direction. When q =1,
δ1 = �x and δ2 = �σ . As the grid is refined, δ1 and δ2 decrease in proportion with
�x and �σ , and the approximate delta function becomes more narrowly distributed.
However, when q < 1, δ1 and δ2 decrease slower than �x and �σ . Consequently, the
approximate delta function occupies a higher number of grid intervals as the grid is
refined. To ensure a smooth velocity field, the delta function must be better resolved
as the grid becomes finer. Numerical experimentation showed that 0.6 � q � 0.8 is
appropriate for the simulations discussed in the next section.

To compute the evolution of the flow subject to an initial condition, we use
a variation of Chorin’s projection method. The algorithm involves a number of
elementary sub-steps based on the constituent evolution equations

ρ
∂u
∂t

= −χex + ∇µ × ω + B(x), (5.8a)

ρ

(
∂u
∂t

+ v · ∇u
)

= µ∇2u, ρ
∂u
∂t

= −∇φ, (5.8b,c)

where

B(x) ≡ −
∫

I

H(x − x ′)� f (x ′) dl(x ′), (5.9)

v ≡ u − (2/ρ) ∇µ, χ is a specified pressure drop across each period of length L,
ex is the unit vector along the x-axis, and φ is a projection function regarded as
an approximation of the non-periodic part of the pressure (e.g. Pozrikidis 1997,
2003). To expedite the simulations, the second step is further decomposed into two
one-dimensional convection–diffusion steps,

ρ

(
∂u
∂t

+ vx

∂u
∂x

)
= µ

∂2u
∂x2

, ρ

(
∂u
∂t

+ vσ

∂u
∂σ

)
= µ




1

σ

∂

∂σ

(
σ

∂ux

∂σ

)
∂

∂σ

[
1

σ

∂(σuσ )

∂σ

]

 . (5.10)
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The first sub-step is subject to the streamwise periodicity condition, whereas the
second sub-step is subject to carefully designed conditions at the tube wall and
centreline, as will be discussed later in this section. The governing equations were
integrated in time using a finite-difference method on a uniform grid. Specifically,
(5.8a) was integrated using the explicit Euler method, while equations (5.10) were
integrated using the implicit Crank–Nicolson method. The latter requires the solving
of tridiagonal or nearly tridiagonal systems of linear equations using the standard
and a modified version of the Thomas algorithm (e.g. Pozrikidis 1998).

In the computations discussed in this article, the densities of the core and annular
fluids are identical. Treating the density as a constant, and demanding that (5.8c)
delivers a solenoidal velocity field at the end of a complete time step, we derive
a Poisson equation for the projection function, ∇2φ = (ρ/�t) ∇ · u∗, where u∗ is the
intermediate velocity at the end of the convection–diffusion step. The solution was
found using standard Gauss–Seidel iterations, subject to the streamwise periodic
condition and the homogeneous Neumann boundary condition at the channel walls.

The no-penetration boundary condition at the tube wall and symmetry condition at
the centreline, uσ = 0, are imposed in solving (5.10). To ensure the exact satisfaction
of the no-slip boundary condition at the wall at the end of the projection step,
advancement over each time step is carried out in an iterative fashion, wherein a slip
boundary condition at the wall for the intermediate velocity at the σ convection–
diffusion step is gradually modified in anticipation of the O(�t) slip velocity intro-
duced in the projection step. Similarly, a non-zero slope condition for ∂ux/∂σ is
imposed at the centreline, and is then modified during each iteration so that the
intermediate velocity field cancels the error introduced in the projection step. In
practice, because both slip velocities are transferred from the previous step, only one
or two iterations are necessary to reduce ux at the wall and ∂ux/∂σ at the centreline
down to the level of the round-off error.

Once the velocity field has been updated over a time step, the interfacial marker
points are advanced with the interpolated velocity field using Euler’s explicit method.
In the present numerical simulations, the interfacial nodes are chosen to be Lagrangian
point particles convected with the fluid velocity. The interpolation of the nodal
velocity is carried out using the bicubic B-spline approximation in the (x, σ )-plane
(e.g. Pozrikidis 2004b). The convection–diffusion equation (2.4) is simultaneously
integrated by a finite-volume method (Pozrikidis 2004b). In particular, following or
preceding the advancement of the interfacial nodes, the concentration field is advanced
in time using a semi-implicit method, where the geometrical properties of the interface
are evaluated at the beginning of each time step.

The performance of the numerical method was assessed by comparing the results
of numerical simulations with the predictions of linear stability theory. As a first test,
we consider the stationary core–annular arrangement in the absence of surfactants,
β = 0. A perturbation is introduced by displacing the interface to a position described
by

σ (x, t = 0) = a + ε b cos(kx), (5.11)

where k = 2π/L is the wavenumber, and ε is the dimensionless amplitude of the
disturbance.

Figure 9 shows the evolution of the interface amplitude, a1, normalized by the
initial amplitude, a0 ≡ εb, plotted against the dimensionless time τ ≡ tγ0/(µ2b) on a
log–linear scale, for λ= µ2/µ1 = 0.5 and J = 1, in the absence of a mean flow, Ca = 0.
The unperturbed interface is located at a =0.5b, the wavelength of the interfacial
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Figure 9. (a) Capillary instability of a stationary arrangement in the absence of surfactants,
for a/b = 0.5, L/b = 6 and µ2/µ1 = 0.5. The dashed line represents the predictions of linear
stability theory. (b, c) Velocity profiles at time τ = 0.1 at locations kx = − 2π, −3π/2, −π,
−π/2, 0, π/2, π, 3π/2. (b) ux reduced by 10−3γ0/µ2, and (c) uσ reduced by 2 × 10−4γ0/µ2.
The dashed lines represent the prediction of linear stability theory calculated from the velocity
eigenfunctions.

wave is L/b = 6, the initial amplitude of the interface is ε = 0.01, and the initial
velocity is set to zero at all grid points. The simulation was conducted on a 48 × 24
grid in the (x, σ )-plane, with dimensionless time step �τ = 0.005. The dashed line
with slope s ′ = kbcIµ2/γ0 = 0.012329 in figure 9(a) represents the prediction of the
linear stability analysis of Kwak & Pozrikidis (2001), which describes the exponential
growth of a normal mode. The numerical results are in excellent agreement with
this theoretical estimate. Figure 9(b, c) shows velocity profiles calculated on a 48 × 32
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grid at time τ =0.1, at several streamwise locations. The solid lines represent the
numerical results, and the dashed lines represent the velocity profiles constructed
from the eigenfunctions of the linear stability problem given by Kwak & Pozrikidis
(2001). The graphs reveal that the radial velocity component, uσ , is in phase with the
interfacial wave, whereas the streamwise component, ux , is shifted by 90◦. Overall,
the numerical results faithfully reproduce the eigenfunctions even though the initial
condition does not precisely correspond to an eigenmode.

Next, we consider core–annular flow and compare the numerical results with the
predictions of linear stability analysis discussed in § 4, in the absence of surfactants.
The numerical simulations were conducted on a 96 × 24 grid, using the unperturbed
unidirectional velocity field as an initial condition. Figure 10(a) shows the growth
of the interfacial amplitude for a/b = 0.5, kb = 0.5, Re = 0.1875, λ= 0.5, Ca = 0.1875
and ε = 0.01. The solid line representing the simulations is in excellent agreement
with the dashed line with slope s ′ = 0.003915, representing the prediction of linear
analysis. Because of the mean flow, the interfacial wave is convected with phase
velocity cR 
 0.16γ0/µ2, which is in good agreement with that predicted by linear
theory, cR = 0.169874γ0/µ2, and is somewhat lower than the unperturbed interfacial
velocity, uI = 0.1875γ0/µ2. Figure 10(b, c) shows the profiles of the perturbation
velocity calculated on a 96 × 32 grid at time τ = 0.2, at several streamwise locations.
Note that the artificial interfacial jump in the velocity eigenfunctions is smoothed out
in the simulation.

As a last case study, we consider flow in the presence of surfactants. The flow
parameters are the same as those in figure 10, except that β = 0.5 and Ds = 0. The
initial surfactant concentration is described by

Γ (x, t = 0) = Γ0[1 + εΓ cos(kx − φΓ )], (5.12)

where Γ0 is unperturbed surfactant concentration, εΓ is the dimensionless amplitude
of the perturbation, and φΓ is the phase-shift of the surfactant concentration wave
with respect to the initial interfacial displacement described by (5.11). The normal
mode analysis reveals an unstable eigenmode with εΓ /ε = 4.7780 and φΓ = −0.3199.
A simulation with Γ0 = 1 and εΓ = 0.01 shows that the interfacial wave grows with
growth rate s ′ 
 0.0053, which is close to that estimated by the linear stability analysis,
s ′ = 0.004268. The numerical phase velocity, cR 
 0.16γ0/µ2, is in better agreement
with the prediction of linear analysis, cR = 0.168780γ0/µ2.

In summary, the numerical method was confirmed to reproduce faithfully the
behaviour predicted by linear stability theory for small perturbations, and may
therefore be used with confidence to study the evolution of nonlinear waves.

6. Simulation of the nonlinear motion
The numerical method discussed in § 5 was applied to study the nonlinear stages

of the instability of the core–annular flow beyond the confines of linear theory. In all
simulations presented in this section, the undisturbed unidirectional flow was chosen
as the initial condition, and the initial amplitudes of the interface and surfactant
concentration waves were set to ε =0.01 and εΓ = 0. Numerical experimentation
revealed that the initial amplitude of the surfactant concentration does not have a
profound influence on the evolution and only mildly affects the transient interfacial
profiles. Both the total amount of surfactant and the individual fluid volumes are well
preserved, with relative errors of less than 1% incurred throughout the simulations.
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Figure 10. (a) Growth of the interfacial wave in core–annular flow in the absence of surfac-
tants, for a/b =0.5, L/b = 6, µ2/µ1 = 0.5, Re = 0.1875 and Ca= 0.1875. The dashed line repre-
sents the prediction of linear stability theory. (b, c) Profiles of velocity perturbation at time
τ = 0.2 at kx = − 2π, −3π/2, −π, −π/2, 0, π/2, π, 3π/2, and 2π. (b) Streamwise component
reduced by 10−3γ0/µ2; (c) radial component reduced by 6.6667 × 10−5γ0/µ2. The dashed lines
represent the predictions of linear stability theory, calculated from the velocity eigenfunctions.

The growth of the interfacial amplitude is shown in figure 11 for an assortment of
flow conditions, in the presence and absence of the surfactant. In all cases, the initial
growth rate of the contaminated interface is close to that of the corresponding clean
interface, as predicted by linear stability analysis. The effect of the surfactant becomes
important at longer times. It is interesting that the clean interface sustains the linear
growth rate for a long period of time, whereas the contaminated interface exhibits a
nonlinear growth at an early stage of the motion. In most cases, the disturbance is
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Figure 11. Nonlinear growth of interfacial waves with L/b =2π and (a) various Reynolds
numbers for a/b = 0.5, λ= 0.5, Ca= 1.0, (b) various mean interface positions, a/b, for Re = 1.0,
λ= 0.5, Ca= 1.0, (c) various viscosity ratios, λ, for a/b = 0.5, Re =1.0, Ca = 1.0, and (d) various
capillary numbers, Ca, for Re =1.0, a/b = 0.5, λ= 0.5. Note that the two dashed lines in (d)
are nearly indistinguishable. (e) Interfacial profiles for Re = 100, a/b = 0.5, λ= 0.5, Ca = 1.0,
L/b = 2π, α = 50 and Ma = 1 at times τ = 4, 6, 8, . . . , 38; the interface has been shifted so that
the maximum point is located at the origin of the x-axis. The undisturbed interface is shown
as a dotted line.

amplified faster in the presence of the surfactant, and this corroborates the notion
that the surfactant has a destabilizing effect in the presence of a mean flow.

Figure 11(e) shows evolving interfacial profiles for Re =100, a/b = 0.5, λ=0.5,
Ca =1.0, L/b = 2π, α = 50 and Ma = 1, over a period of time from τ = 4 to 38. To
illustrate clearly the evolution of the profiles, the origin of the x-axis has been shifted
to the point of maximum radial deflection. During the early stage of the motion, the
interface retains a regular sinusoidal profile. As the amplitude of the wave grows and
nonlinearity comes into play, the crests of the developing wave tend to steepen and
eventually overturn.

Figure 12 shows evolving interfacial profiles in a stationary frame of reference
for a relatively thin annulus, a/b = 0.75, Re = 0.5833, λ= 0.5, Ca = 0.5833, L/b = π,
α = 20 and Ma = 1. In these illustrations, the mean flow has been filtered out to
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Figure 12. Illustration of the disturbance velocity field for Re = 0.5833, a/b =0.75, λ= 0.5,
Ca=0.5833, L/b = π, α =20 and Ma = 1 at time (a) τ = 30, (b) τ =50 (c) τ =55 and
(d) τ =60. The interface is shown as a solid line.

reveal the disturbance velocity. Linear theory in the absence of surfactant predicts
a negative dimensionless growth rate, s ′ = −0.01275, corresponding to a stable flow.
Adding surfactant destabilizes the flow by raising the growth rate to the positive value
s ′ = 0.03653. The nonlinear evolution leads to the development of a pointed wave. The
wave does not reach a steady state, and the simulation terminates when thin wisps
of the more viscous core fluid penetrate the less viscous annular fluid, whereupon
the numerical method fails owing to the high curvature at the apex. In all parts of
figure 12, a pair of counter-rotating vortices is evident within each wave. The velocity
vectors indicate that the upstream side of the crest is moving away from the centre-
line, whereas the downstream side is moving toward the centreline. Thus, the interfacial
wave is convected with a velocity that is lower than the unperturbed interfacial
velocity, which is consistent with the predictions of the linear theory, cR = 0.802 uI .

Figure 13 shows several stages in the evolution of a wave for flow parameters
identical to those corresponding to figure 11(b), taking a/b = 0.25, Ma = 1 and Ds =0.
The profiles in figures 13(a) and 13(b) suggest that the growing wave is accompanied
by a pair of counter-rotating vortices, and the interfacial wave propagates faster than
the mean flow. This behaviour is consistent with the estimate of linear theory for the
phase velocity, cR = 1.0065 uI . The profiles in figures 13(b) and 13(c) indicate that the
core cross-section at point B, located on the upstream side of the crest, thins as fast as
the cross-section at point A, located at the trough of the wavy core flow. Figure 13(d)
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Figure 13. The disturbance velocity field with Re =1.0, a/b = 0.25, λ= 0.5, Ca = 1.0, L/b = π,
Ds = 0 and Ma =1 at time (a) τ = 20, (b) 30, (c) 40 and (d) 50. The interface is shown as a
solid line.

shows that point A finally outruns point B and suggests that the core will eventually
break up at point A to form an array of slugs. This example illustrates the potentially
complicated dynamics of the core–annular flow in the presence of a surfactant during
the nonlinear stages of the motion.

Figure 14 shows a different type of core breakup occurring at Re = 10, a/b = 0.25,
λ= 2, Ca =0.25, L/b = 2π, α =50 and Ma = 1. Note that, in this case, the core fluid
is less viscous than the annular fluid. Linear stability analysis predicts that the core–
annular flow in the absence of a surfactant is unstable to long-waves when λ > 1,
regardless of the Reynolds number (Hickox 1971). The present simulation reveals that
the interface evolves under action of the Marangoni traction, and the results suggest
that the wave will pinch off at several locations into a series of drops suspended in
the annular fluid. The size of the drops and precise protocol of core breakup cannot
be determined from linear stability theory.

7. Summary
We have examined the linear and nonlinear instability of the surfactant-laden

core–annular flow, subject to axisymmetric disturbances. The stability of the clean
core–annular flow has received a great deal of attention in the literature. The primary
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Figure 14. The disturbance velocity field for Re = 10, a/b = 0.25, λ= 2, Ca =0.25, L/b = 2π,
α = 50 and Ma =1 at time (a) τ = 30, (b) 40, (c) 50 and (d) 60. The interface is shown as a
solid line.

contribution of the present work is a quantified assessment of the effect of the
surfactant and a description of the nonlinear dynamics by direct numerical simulation.

In the first part of the investigation, a normal-mode linear stability analysis was
conducted to examine the behaviour of small-amplitude perturbations. Numerical
solutions of the Orr–Sommerfeld equation were computed at arbitrary Reynolds
numbers using a Chebyshev tau method. Trial calculations showed that few Chebyshev
modes are required to resolve the growth rates accurately. The code was validated by
successful comparison with results for Stokes flow, as well as with previous work for
stationary fluids (Kwak & Pozrikidis 2001). Analytical results for Stokes flow revealed
the existence of two normal modes, including the capillary mode of the cylindrical
interface, and a Marangoni mode associated with the surfactant. Although an infinite
number of normal modes arise at non-zero Reynolds numbers, the dominant capillary
and Marangoni modes can be identified by parameter continuation with respect to
the Reynolds number. We have found that only one normal mode is unstable for all
conditions considered, and the capillary mode dominates and is responsible for the
overall instability of the core–annular flow. This finding contrasts with results for a
two-dimensional interface in two-layer channel flow, where two modes can have
positive growth rates, and either may determine the instability of the flow depending
on the flow parameters.
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In the case of core–annular flow, the chief effect of the surfactant is to elevate the
growth rate of the dominant capillary mode, and to extend the range of unstable
wavenumbers. This coincides with the findings of Wei (2005) and Wei & Rumschitzki
(2005), who made the same observation when the annular layer is thin. The surfactant
has a most significant influence at moderate Marangoni numbers, since the cutoff
wavenumber for instability quickly reaches a maximum as the Marangoni number
rises. Neutral curves presented for a variety of parameter values have revealed that
the range of unstable wavenumbers grows with Reynolds number when the capillary
number is fixed, and this highlights the destabilizing role of inertia. The unstable
range also widens by decreasing the thickness of the annular layer or by raising the
viscosity ratio. Increasing the viscosity ratio above a critical level alters the topology
of the neutral stability contour, with a hoop of stable modes appearing below the
main neutral branch enclosing stable modes in a certain band of wavenumbers.

The effect of convection was also considered. We have noted an apparent
inconsistency between the present observations in the presence of a mean flow where
surfactant has a destabilizing influence, and those observed for stationary fluids where
the surfactant tends to calm interfacial disturbances. The discrepancy was resolved by
noting a crossover in the growth rates when the capillary number is increased from
zero. Neutral curves for a fixed suitably defined surface tension parameter and varying
Reynolds or capillary number reproduced previous results of Preziosi et al. (1989) for
a clean interface, and extended them to non-zero Marangoni numbers. In the presence
of a mean flow, a long-wave instability occurs at small Reynolds numbers. After a
gap, this is followed by a shorter-wave instability at higher Reynolds numbers.

In the second part of the investigation, we conducted a numerical study of the
nonlinear motion using a combined immersed interface method and finite-difference
discretization. The code was validated by successful comparison with the present linear
stability results, as well as with the results of Kwak & Pozrikidis (2001) for quiescent
fluids. The numerical simulations are in excellent agreement with the normal-mode
predictions in the early stages of the motion. When surfactant is present, the nonlinear
dynamics exhibits a more pronounced departure from the forecasts of linear theory,
as nonlinear effects quickly take hold. As the nonlinearities develop, the waves grow
and may eventually steepen and overturn. Different types of evolution are observed
under different flow conditions, including the development of pointed waves and
arrangements suggestive of the formation of slugs and drops.

In conclusion, the surfactant has a generally destabilizing effect on the core–
annular flow, and the Marangoni traction resulting from non-uniform distribution of
the surfactant is responsible for a dynamics that is far more complex than that for a
clean flow.

This research was supported by a grant provided by the National Science
Foundation. M.G. B. was supported by the Nuffield Foundation under grant NUF-
NAL-O4.

Appendix A. Calculation of the Chebyshev integrals
To compute the normal modes, the axisymmetric analogue of the Orr–Sommerfeld

equation is multiplied through by σ 4 and projected onto Tm(σj ) for m= 0, . . . , Nj − 4
in each fluid, j = 1, 2, in preparation for the Chebyshev tau method. The resulting
equations involve integrals of the type
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I =

∫ 1

−1

w(x) Tn

dqTm

dxq
xp dx (A 1)

for integers p � 5, q � 4, and for general integers n, m, where Tn(x) is a

Chebyshev polynomial, and w(x) = 1/
√

1 − x2 is the Chebyshev weighting function.
These integrals may be evaluated analytically. Following Gottlieb & Orszag (1977),
we write

dqTm

dxq
=

∞∑
k=0

a
(q)
k Tk(x), (A 2)

where the coefficients are determined by the recurrence relation

ck−1a
(q)
k−1 − a

(q)
k+1 = 2ka

(q−1)
k (k � 1), (A 3)

with c0 = 2, ck =0 if k < 0, and ck = 1 if k > 0. By expanding xpTn(x) in a series of
Chebyshev polynomials, and making use of the orthogonality condition,∫ 1

−1

w(x) Tn(x) Tk(x) dx = 1
2
π ckδnk, (A 4)

where δnk is the Kronecker delta, we derive

I =
π

2p+1

p∑
r=0

(
p

r

)
a

(q)
n+p−2r cn+p−2r , (A 5)

which is valid for n � p, and any integer p. For the present purposes, it is sufficient
to obtain a second formula, valid when n < p � 5. Writing

Tn(x) =

n∑
k=0

b
(n)
k xk, (A 6)

where the coefficients b
(n)
k are known (e.g. Abramowitz & Stegun 1972, p. 795), and

furthermore writing

xp+k =

p+k∑
i=0

d
(p,k)
i Ti(x), (A 7)

where the coefficients d
(p,k)
i are also known (e.g. Abramowitz & Stegun 1972, p. 795),

and applying the orthogonality condition (A 4), we find

I =

n∑
k=0

b
(n)
k

m−q∑
r=0

a(q)
r Q(p,k)

r , (A 8)

where

Q(p,k)
r =

{
1
2
πcrd

(p,k)
r if r � p + k,

0 otherwise.
(A 9)

Appendix B. Linear stability analysis for Stokes flow
In this Appendix, we present the linear stability analysis of core–annular flow in the

presence of an insoluble surfactant, in the limit of vanishing Reynolds number where
the flow is governed by the equations of Stokes flow. In the unperturbed configuration,
the surfactant concentration is uniform, and the fluid motion is unidirectional and
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parallel to the pipe wall, as discussed in § 2. The basic velocity profile is given in (2.5),
and the pressure distribution state is given in (2.7). A normal-mode perturbation
displaces the interface to a position given by the real or imaginary part of (3.1). The
perturbation streamfunction, ψ

(1)
j , and vorticity, ω

(1)
j , in either fluid satisfy

D2ψ
(1)
j = −σ ω

(1)
j , D2

(
σ ω

(1)
j

)
= 0, (B 1)

where the operator D is defined in (3.5). Introducing the normal-mode forms (3.6),
we find that the general solution to (B 1), is given by

ψ
(1)
j = σ [a1,j I1(kσ ) + b1,jK1(kσ ) + a2,j σ I0(kσ ) + b2,j σK0(kσ )] exp(ik[x − ct]), (B 2)

where the I , K are modified Bessel functions (Goren 1962). Substituting the expression
for the pressure given in (3.6) in the x-component of the Stokes equation and
simplifying, we find

ik qj =
1

σ

∂

∂σ

(
D2ψ

(1)
j

)
, (B 3)

so that

qj (σ̂ ) = − ik3

σ̂

(
d3φj

dσ̂ 3
− 1

σ̂

d2φj

dσ̂ 2
+

(
1

σ̂ 2
− 1

)
dφj

dσ̂

)
. (B 4)

Substituting the preceding expressions in the kinematic condition (3.10), we obtain

(c − uI )A1 = a21 aI0(k̂) + a11 I1(k̂), (B 5)

where k̂ = ka.
Next, we use the linear constitutive equation for the surfactant concentration to

write γ1 = −(Maγ0/Γ0) Γ1, where Ma is the Marangoni number. Substituting the
preceding expressions in (3.16) and simplifying, we obtain

a[I0(k̂) + k̂I1(k̂)]a21 + [k̂I0(k̂) − I1(k̂)]a11 − 2λuIa
2

(b2 − a2)
A1 = [a(c − uI ) + ik̂Ds]

Γ1

Γ0

. (B 6)

Now, because φ1/σ and φ′
1/σ must be bounded at σ =0, we must have b11 = b21 = 0.

To satisfy the no-slip and no-penetration condition at the wall, we require φ2 = φ′
2 = 0

at σ = b. Using the properties of the Bessel functions, we find

I1(b̂) a12 + K1(b̂) b12 + bI0(b̂) a22 + bK0(b̂) b22 = 0, (B 7a)

kI0(b̂) a12 − kK0(b̂) b12 + [2I0(b̂) + b̂I1(b̂)] a22 + [2K0(b̂) − b̂K1(b̂)] b22 = 0, (B 7b)

respectively, where b̂ ≡ kb. The velocity must be continuous across the interface.
Upon linearization, we find

u
(1)
1 = u

(1)
2 , w

(1)
1 + η

∂w
(0)
1

∂σ
= w

(1)
2 + η

∂w
(0)
2

∂σ
(B 8a, b)

at σ = a. Equation(B 8a) gives

(a11 − a12) I1(k̂) + (a21 − a22) aI0(k̂) − b22 aK0(k̂) − b12 K1(k̂) = 0, (B 9)

and (B 8b) gives

(a11 − a12) kI0(k̂) + [k̂I1(k̂) + 2 I0(k̂)](a21 − a22)

+ [k̂K1(k̂) − 2 K0(k̂)]b22 + kK0(k̂) b12 = 2
a

(b2 − a2)
uI (λ − 1)A1. (B 10)
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The linearized normal and shear stress balance at the interface are given in (3.12)
and (3.14). Substituting the preceding expressions and simplifying, we obtain

2iµ1k̂[k̂I0(k̂) − I1(k̂)] (λa12 − a11) − 2iµ2k̂[k̂K0(k̂) + K1(k̂)] b12

+ 2 iµ2 ak̂2 I1(k̂) (λa22 − a21) − 2 iµ2 ak̂2 K1(k̂) b22 = γ0(1 − k̂2) A1 − aγ1, (B 11)

and

µ1 kI1(k̂) (λa12 − a11) + µ1[I1(k̂) + k̂I0(k̂)] (λa22 − a21) + µ2 kK1(k̂) b12

+ µ2[k̂K0(k̂) − K1(k̂)] b22 = − 1
2
i γ1, (B 12)

respectively. The linearized transport equation (B 6) can be used to eliminate γ1 from
(B 11) and (B 12).

Equations (B 5), (B 7), (B 9), (B 10), (B 11) and (B 12) are finally assembled in the
linear system

M · w = 0, (B 13)

where M is a 7 × 7 complex coefficient matrix and w = [a11, a21, a12, a22, b12, b22, A1]
T

is the vector of unknowns. Setting the determinant of M to zero yields a quadratic
equation for the complex phase velocity c, corresponding to two normal modes. In
practice, we use the algebraic manipulation package Maple to derive the quadratic
coefficients and compute the roots corresponding to a pair normal modes.
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